中国科技核心期刊

中文核心期刊

CSCD来源期刊

空间控制技术与应用 ›› 2023, Vol. 49 ›› Issue (6): 28-37.doi: 10.3969/j.issn.1674 1579.2023.06.003

• 论文与报告 • 上一篇    下一篇

一种基于双目视觉的立方星位姿参数估计算法

  

  1. 中国科学院国家空间科学中心复杂航天系统综合电子与信息技术重点实验室
  • 出版日期:2023-12-25 发布日期:2023-12-28
  • 基金资助:
    中科院国家空间科学中心“攀登计划”支持(E1PD30031S)

A CubeSat Pose Estimation Algorithm Based on Binocular Vision

  • Online:2023-12-25 Published:2023-12-28

摘要: 针对当前使用图像特征的空间非合作目标立方星位姿估计算法存在鲁棒性差的问题,提出一种利用立方星顶点进行位姿估计的设计方案.基于双目视觉获取的灰度图像,采用HED(holistically nested edge detection)网络结合二值化形态学处理方法以提高边缘提取的鲁棒性.检测出边缘图像中的多边形特征后,滤除重复和干扰的多边形,设计共边双框关键顶点判别算法判别立方星的关键顶点,实现了对立方星结构参数和位姿的估计.采用立方星模型进行实验验证,整体方法相比ICP(iterative closest point)精配准方法在30~70 cm探测距离内实现了最大4.4°、1.2 cm的偏差;边缘提取方法对目标结构参数判别准确率提升10%~40%,为非合作目标立方星的结构参数和位姿估计提供新技术路线.

关键词: 非合作目标, 立方星, HED网络, 结构参数估计, 位姿估计

Abstract: Aiming at the problem of poor robustness of the current spatial noncooperative CubeSat pose estimation algorithm using image features, a design scheme using CubeSat vertices for pose estimation method is proposed in this paper. Based on the grayscale image obtained by binocular vision, HED (holistically nested edge detection) network and binary morphology processing method are used to improve the robustness of edge extraction. After detecting the polygon features in the edge image, the polygons with repeated and interference are filtered out, and the key vertices of the CubeSat are identified by a common side double frame key vertices discrimination algorithm, which realizes the estimation of the structural parameters and pose of the CubeSat. The CubeSat model is used for experimental verification. Compared with ICP (iterative closest point) precise registration method, the overall method achieves a maximum deviation of 4.4° and 1.2cm within the detection distance of 30~70cm. In this paper, the edge extraction method improves the discriminant accuracy of target structural parameters by 10%~40%, which provides a new idea for the estimation of structural parameters and pose of noncooperative target CubeSat.

Key words: noncooperative object, CubeSat, HED network, structural parameter estimation, pose estimation

中图分类号: 

  • TP391.41